College-Level Mathematics Test

The College-Level Mathematics test measures your ability to solve problems that involve college-level mathematics concepts. There are six content areas measured on this test: (a) Algebraic Operations, (b) Solutions of Equations and Inequalities, (c) Coordinate Geometry, (d) Applications and other Algebra Topics, (e) Functions and (f) Trigonometry. The Algebraic Operations content area includes the simplification of rational algebraic expressions, factoring and expanding polynomials, and manipulating roots and exponents. The Solutions of Equations and Inequalities content area includes the solution of linear and quadratic equations and inequalities, systems of equations, and other algebraic equations. The Coordinate Geometry content area presents questions involving plane geometry, the coordinate plane, straight lines, conics, sets of points in the plane, and graphs of algebraic functions. The Functions content area includes questions involving polynomial, algebraic, exponential and logarithmic functions. The Trigonometry content area includes trigonometric functions. The Applications and other Algebra Topics content area contains complex numbers, series and sequences, determinants, permutations and combinations, factorials, and word problems. A total of 20 questions are administered on this test.

Sample Questions

For each of the questions below, choose the best answer from the four choices given. You may use the paper you received as scratch paper.

1. \(2^7 - 2^5\)
 A. \(2^4\)
 B. 2
 C. \(2^3\)
 D. \(2^5\)
 E. \(2^7\)

2. If \(a \neq b\) and \(\frac{1}{x} + \frac{1}{a} = \frac{1}{b}\), then \(x =\)
 A. \(\frac{1}{b} - \frac{1}{a}\)
 B. \(b - a\)
 C. \(\frac{1}{ab}\)
 D. \(\frac{a - b}{ab}\)
 E. \(\frac{ab}{a - b}\)

3. If \(3x^2 - 2x + 7 = 0\), then \((x - \frac{1}{3})^2 =\)
 A. \(\frac{20}{9}\)
 B. \(\frac{7}{9}\)
 C. \(\frac{7}{9}\)
 D. \(\frac{8}{9}\)
 E. \(\frac{20}{9}\)

4. The graph of which of the following equations is a straight line parallel to the graph of \(y = 2x\)?
 A. \(4x - y = 4\)
 B. \(2x - 2y = 2\)
 C. \(2x - y = 4\)
 D. \(2x + y = 2\)
 E. \(x - 2y = 4\)

5. An equation of the line that contains the origin and the point (1, 2) is
 A. \(y = 2x\)
 B. \(2y = x\)
 C. \(y = x - 1\)
 D. \(y = 2x + 1\)
 E. \(\frac{y}{2} = x - 1\)

6. An apartment building contains 12 units consisting of one- and two-bedroom apartments that rent for $360 and $450 per month, respectively. When all units are rented, the total monthly rental is $4,950. What is the number of two-bedroom apartments?
 A. 3
 B. 4
 C. 5
 D. 6
 E. 7
7. If the two square regions in the figures below have the respective areas indicated in square yards, how many yards of fencing are needed to enclose the two regions?

\[
\begin{array}{|c|}
\hline
\text{125}\hline
\end{array}
\]

5

A. \(4\sqrt{130}\)
B. \(20\sqrt{10}\)
C. \(24\sqrt{5}\)
D. 100
E. \(104\sqrt{5}\)

8. If \(\log_{10} x = 3\), then \(x = \)

A. \(3^3\)
B. 1,000
C. 30
D. \(\frac{10}{3}\)
E. \(\frac{3}{10}\)

9. If \(f(x) = 2x + 1\) and \(g(x) = \frac{x - 1}{2}\), then \(f(g(x)) = \)

A. \(x\)
B. \(x - 1\) \(4x + 2\)
C. \(\frac{4x + 2}{x - 1}\)
D. \(\frac{5x + 1}{2(x + 1)(x - 1)}\)
E. \(\frac{5x + 1}{2}\)

10. If \(\theta\) is an acute angle and \(\sin \theta = \frac{1}{2}\), then \(\cos \theta = \)

A. -1
B. 0
C. \(\frac{1}{2}\)
D. \(\frac{\sqrt{3}}{2}\)
E. 2

11. \(5y(2y - 3) + (2y - 3) = \)

A. \((5y + 1)(2y + 3)\)
B. \((5y + 1)(2y - 3)\)
C. \((5y - 1)(2y + 3)\)
D. \((5y - 1)(2y - 3)\)
E. \(10y(2y - 3)\)

12. For what real numbers \(x\) is \(x^2 - 6x + 9\) negative?

A. \(-3 < x < 3\)
B. \(x < -3\) or \(x > 3\)
C. \(x = -3\) or \(x = 3\)
D. \(0 < x < 6\)
E. For no real numbers \(x\)

13. A root of \(x^2 - 5x - 1 = 0\) is

\[
\begin{align*}
A. \quad & \frac{1 - \sqrt{29}}{2} \\
B. \quad & \frac{5 - \sqrt{17}}{2} \\
C. \quad & \frac{1 + \sqrt{29}}{2} \\
D. \quad & \frac{5 + \sqrt{17}}{2} \\
E. \quad & \frac{5 + \sqrt{29}}{2}
\end{align*}
\]

14. In the \(xy\)-plane, the graph of \(y = x^2\) and the circle with center \((0,1)\) and radius 3 have how many points of intersection?

A. None
B. One
C. Two
D. Three
E. More than three

15. If an equation of the linear function in the figure above is \(y = mx + b\), then \(m = \)

\[
\begin{align*}
A. \quad & \frac{r}{s} \\
B. \quad & \frac{r}{s} \\
C. \quad & rs \\
D. \quad & r \\
E. \quad & -s
\end{align*}
\]
16. One ordering of the letters T, U, V and W from left to right is UTBVW. What is the total number of orderings of these letters from left to right, including UTBVW?
 A. 8
 B. 12
 C. 16
 D. 20
 E. 24

17. If \(f(x) = \frac{3x - 1}{2} \) and \(f^{-1} \) is the inverse of \(f \), what is the value of \(f^{-1}(3) \)?
 A. \(\frac{1}{3} \)
 B. \(\frac{2}{3} \)
 C. 1
 D. 2
 E. \(\frac{7}{3} \)

18. The sequence \(\{a_n\} \) is defined by \(a_0 = 1 \) and \(a_{n+1} = 2a_n + 2 \) for \(n = 0, 1, 2, \ldots \). What is the value of \(a_3 \)?
 A. 8
 B. 10
 C. 16
 D. 20
 E. 22

19. From 5 employees at a company, a group of 3 employees will be chosen to work on a project. How many different groups of 3 employees can be chosen?
 A. 3
 B. 5
 C. 6
 D. 10
 E. 15

20. If \(f(x) = \left(\frac{1}{3}\right)^x \) and \(a < b \), which of the following must be true?
 A. \(f(a) + f(b) = 3 \)
 B. \(f(a) + \frac{1}{3} = f(b) \)
 C. \(f(a) = f(b) \)
 D. \(f(a) < f(b) \)
 E. \(f(a) > f(b) \)